Tuesday, June 28, 2011

Protection of taiga

Many nations are taking direct steps to protect the ecology of the taiga by prohibiting logging, mining, oil and gas production, and other forms of development. In February 2010 the Canadian government established protection for 13,000 square kilometres of boreal forest by creating a new 10,700 square kilometre park reserve in the Mealy Mountains area of eastern Canada and a 3,000 square kilometre waterway provincial park that follows alongside the Eagle River from headwaters to sea. The taiga stores enormous quantities of carbon, possibly more than the temperate and tropical forests combined, much of it in peatland.

Natural disturbance

One of the biggest areas of research and a topic still full of unsolved questions is the recurring disturbance of fire and the role it plays in propagating the lichen woodland. The phenomenon of wildfire by lightning strike is the primary determinant of understory vegetation and because of this, it is considered to be predominate driving force behind community and ecosystem properties in the lichen woodland. The significance of fire is clearly evident when one considers that understory vegetation influences tree seedling germination in the short term and decomposition of biomass and nutrient availability in the long term. The recurrent cycle of large, damaging fire occurs approximately every 70 to 100 years. Understanding the dynamics of this ecosystem is entangled with discovering the successional paths that the vegetation exhibits after a fire. Trees, shrubs and lichens all recover from fire induced damage through vegetative reproduction as well as invasion by propagules.


Seeds that have fallen and become buried provide little help in re-establishment of a species. The reappearance of lichens is reasoned to occur because of varying conditions and light/nutrient availability in each different microstate. Several different studies have been done that have led to the formation of the theory that post-fire development can be propagated by any of four pathways: self replacement, species-dominance relay, species replacement, or gap-phase self replacement. Self replacement is simply the re-establishment of the pre-fire dominant species. Species-dominance relay is a sequential attempt of tree species to establish dominance in the canopy. Species replacement is when fires occur in sufficient frequency to interrupt species dominance relay. Gap-Phase Self-Replacement is the least common and so far has only been documented in Western Canada. It is a self replacement of the surviving species into the canopy gaps after a fire kills another species. The particular pathway taken after a fire disturbance depends on how the landscape is able to support trees as well as fire frequency. Fire frequency has a large role in shaping the original inception of the lower forest line of the lichen woodland taiga.




Centuries ago, the southern limits of lichen woodland taiga were only being formed It has been hypothesized and subsequently proved by Serge Payette that the Spruce-Moss forest ecosystem was changed into the lichen woodland biome due to the initiation of two compounded strong disturbances. The two disturbances were large fire and the appearance and attack of the spruce budworm. The spruce budworm is a deadly insect to the spruce populations in the southern regions of the taiga. J.P. Jasinski confirmed this theory five years later stating “Their [lichen woodlands] persistence , along with their previous moss forest histories and current occurrence adjacent to closed moss forests, indicate that they are an alternative stable state to the spruce–moss forests”.

0 comments:

Post a Comment

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | Best Buy Printable Coupons